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Abstract

The present paper presents a model of damage coupled to wear. The damage model is based on a continuum model

including the gradient of the damage variable. Such a model is non-local in the sense that the evolution of damage is

governed by a boundary-value problem instead of a local evolution law. Thereby, the well-known mesh-dependency

observed for local damage models is removed. Another feature is that the boundary conditions can be used to introduce

couplings between bulk damage and processes at the boundary. In this work such a coupling is suggested between bulk

damage and wear at the contact interface. The model is regarded as a first attempt to formulate a continuum damage

model for studying crack initiation in fretting fatigue.

The model is given within a thermodynamic framework, where it is assured that the principles of thermodynamics

are satisfied. Furthermore, two variational formulations of the full initial boundary value problem, serving as starting

points for finite element discretization, are presented. Finally, preliminary numerical results for a simple one-dimen-

sional example are presented and discussed. It is qualitatively shown how the evolution of damage may influence the

wear behaviour and how damage may be initiated by the wear process.

� 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Continuum thermodynamics; Internal variables; Damage; Gradient of damage; Contact; Friction; Wear; Fretting

1. Introduction

The present paper presents an isotropic damage model coupled to contact, friction and wear. The model
is regarded as a first attempt to formulate a continuum model for studying the crack initiation phase in so-

called fretting fatigue phenomena, see e.g. Hills and Nowell (1994). Fretting fatigue is observed in a number

of machine elements involving mechanical contacts where the contacting bodies are subjected to small

relative oscillatory motions, such as splines, shrink-fits, bolted joints, lugs, etc. This type of contact con-

ditions (fretting) decrease the fatigue performance. Typically cracks are developed at or near the contacting

surfaces which might grow to a critical size leading to fracture.

The damage model utilized here is much based on the works by Fr�eemond and Nedjar (1996) and Nedjar

(2001). The models proposed in these papers include the gradient of the damage variable. Such a model is
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non-local in the sense that the evolution of the damage variable is governed by a boundary value problem

instead of a local evolution law. The use of a non-local model removes the well-known mesh-dependency

observed when local damage models are solved numerically, see e.g Fr�eemond and Nedjar (1996). Another

feature of the non-local model is that the boundary condition of the evolution problem might be used to
introduce a coupling between damage and processes at the boundary, for instance chemical reactions. In

our case we will assume that wear increases damage. Therefore, a coupling between wear and damage is

introduced at the contact interface. Thus, we assume that fretting conditions can be described by an internal

state variable measuring wear and that the experimental fact that fatigue performance is decreased when a

body is subjected to fretting conditions can be modelled by letting the damage flux depend on this particular

variable.

The thermodynamic framework outlined here is somewhat different from that used by Fr�eemond and

Nedjar (1996), where the principle of virtual power was modified taking micro-motions of damage into
account. Here an internal state variable formalism is used, where a scalar variable and its gradient are

internal state variables for measuring damage. In addition two internal state variables are introduced on the

contact interface; one measuring tangential slip and another measuring wear. By using these internal state

variables together with the displacement and the temperature, a constitutive model is formulated using state

laws defined by free energies and complementary laws defined by dual dissipation potentials in the spirit of

generalized standard materials (Halphen and Nguyen, 1975), both for the body and the contact interface.

The formulation of the state laws for the bulk of the body follows essentially Maugin (1990) and resembles

those of other general frameworks for gradient theories, e.g. Svedberg and Runesson (1997) and Lorentz
and Andrieux (1999). An important difference between the framework used here and those of the two latter

is that all basic principles are in this work given as local postulates, while the formulation of Svedberg and

Runesson (1997) and Lorentz and Andrieux (1999) are valid only for global considerations. A way to

preserve the local structure of the basic principles is to introduce an extra entropy flux in the second

principle of thermodynamics due to Maugin (1990). In fact, it is possible to show that this framework is

equivalent to the framework of Fr�eemond and Nedjar (1996). Here the formulation of Maugin (1990) is

extended by a coupling to processes at a contact boundary. The way of formulating constitutive laws for a

contact interface by a free energy and a dissipation potential, an idea that originates from Fr�eemond (1987,
1988), has been utilized in Klarbring (1990), Johansson and Klarbring (1993) and Str€oomberg et al. (1996) to

formulate constitutive relations for contact, friction and wear.

This study is organized as follows: In Section 2 a general model of damage coupled to wear is derived by

use of the principle of virtual power and in accordance with the principles of thermodynamics. In Section 3

a specific model for damage coupled to wear within the proposed thermodynamic framework is suggested

and discussed. The model is intended for studying crack initiation in fretting problems. Finally, two

variational formulations of the governing equations are given. In Section 4 the behaviour of the suggested

model is discussed, based on numerical solutions of a simple one-dimensional example.

2. Derivation of a general model

In this section we derive a general model for isotropic damage of an elastic body in unilateral frictional
wearing contact with a rigid support. The model is restricted to quasi-static small-displacement evolutions.

Firstly, equilibrium equations and local Clausius–Duhem inequalities are derived from the principle of

virtual power and the basic principles of thermodynamics, where an extra entropy flux, as suggested by

Maugin (1990), is introduced. Secondly, constitutive assumptions are formulated using state laws defined

by gradients (or subdifferentials) of free energies and complementary laws defined by subdifferentials of

dual dissipation potentials. The model uses an internal variable representation of the state for the body and
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the contact interface, respectively. Finally, it is proved that these constitutive assumptions fulfill the

Clausius–Duhem inequalities.

Let a region X � Rd ðd ¼ 2; 3Þ with piecewise smooth boundary oX be occupied by a continuously

deformable body, see Fig. 1. The boundary oX is divided into three disjoint parts: Ct � oX where tractions t
are prescribed, Cu � oX with fixed displacements and Cc � oX which is unilaterally constrained by a fixed

rigid obstacle. This potential contact surface is considered as a material boundary following the idea of

Fr�eemond (1987, 1988), i.e. it is possible to define state laws by a free energy and complementary laws by a

dissipation potential on Cc.

2.1. The principle of virtual power

In this subsection the method of virtual power in the sense of Germain (1973a,b) and Maugin (1980) is
used to derive equilibrium equations and to identify the internal forces with the Cauchy stress tensor and

the contact traction vector, respectively.

Assuming quasi-static evolutions the principle of virtual power reads: for any part D � X,

bPPi þ bPPe ¼ 0 8v̂v 2 V; ð1Þ

where V is the set of kinematically admissible velocity fields in X. The virtual power of the internal and

external forces, respectively, are defined by

bPPi ¼ �
Z
D

r : �ðv̂vÞdV �
Z
D\Cc

p 
 v̂vdA ð2Þ

and

bPPe ¼
Z
oDnCc

t 
 v̂vdA; ð3Þ

where ð:Þ and ð
Þ represent inner products between tensors and vectors, respectively, r is a symmetric in-

ternal stress tensor and p is an internal force vector, respectively. Furthermore,

�ðuÞ ¼ 1
2
ðruþruTÞ;

where r represents the gradient of a scalar or a vector. In the following u will denote the displacement

vector.
By inserting (2) and (3) into (1), applying the divergence theorem and the fact that D � X is arbitrary,

the following local equilibrium equations are obtained:

divr ¼ 0 in D; ð4Þ

Fig. 1. A deformable body, unilaterally constrained by a rigid obstacle.
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rn ¼ t on oD n Cc; ð5Þ

rn ¼ �p on oD \ Cc; ð6Þ

where n is the outward unit normal vector to oD. The symmetry of r and Eqs. (4) and (5) imply that r can

be identified as the Cauchy stress tensor. Furthermore, Eq. (6) implies that p can be identified as the contact

traction vector (with reversed sign).
In the following development the contact traction vector as well as the displacement vector on Cc will be

decomposed into normal components and tangential vectors according to

pn ¼ p 
 n; pt ¼ ðI � n
 nÞp; un ¼ u 
 n; ut ¼ ðI � n
 nÞu; ð7Þ

where I represents the identity tensor and 
 is the tensor product of two vectors.

2.2. The principles of thermodynamics

In this subsection we derive a local Clasius–Duhem inequality from the basic principles of thermo-
dynamics, as they are postulated by Maugin (1990), by introducing the Helmholtz free energies of the body

and the contact surface, respectively. The derivation is non-classical in the sense that an extra entropy flux

related to damage flux is added.

Assuming that the internal heat production is zero and adopting the quasi-static assumption, the two

basic principles of thermodynamics are postulated as: for any part D � X

_EE ¼ Pe þ Q ð8Þ

and

_SSP �
Z
oDnCc

qþ c

T

 ndA; ð9Þ

where E is the internal energy, Pe is the power of the external forces defined by (3) evaluated for the real

velocity field _uu, Q is the heat supply per time unit, S is the entropy, q is the heat flux vector and T is the

absolute temperature. Furthermore, the quantity c is an extra entropy flux connected with other diffusive

mechanisms than heat flux. A superimposed dot denotes a time derivative.

Due to the nature of contact, friction and damage, the state is not necessarily smooth in time. Thus, we

need eventually to choose between regarding time-derivatives as left-hand derivatives or right-hand de-

rivatives when rates of the state are expressed. This choice must reflect the nature of constitutive relations
and affects the interpretation of the Clausius–Duhem inequality. A strong requirement is that one should be

able to prove that the Clausius–Duhem inequality is satisfied at each time instant both for left-hand and

right-hand time derivatives, a looser requirement is that it is sufficient to show that it is satisfied for left-

hand time derivatives. An argument for the latter can be found in Fr�eemond and Nedjar (1996), 1 where it is

stated that constitutive relations are relations between quantities at the present state that should be com-

puted using information about the past evolution, i.e. time derivatives are naturally regarded as left-hand

derivatives. However, the stronger requirement that the Clausius–Duhem inequality should be satisfied

both for left-hand and right-hand time derivatives can be fulfilled also in the non-smooth case by con-
sidering special forms of the free energy. In Str€oomberg (1997) it was shown that if the free energy is the sum

1 ‘‘We know that the constitutive laws are objective relations, i.e. relations which are computed at time t with the available

information given by the past history of the material, i.e. by its past evolution. It results that in the constitutive laws the derivatives

with respect to the time are left derivatives.’’, Fr�eemond and Nedjar (1996).
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of a smooth function and an indicator function of a convex set, described by a smooth function, this is

indeed the case.

The internal energy, the heat supply per time unit and the entropy are defined by

E ¼
Z
D

qedV þ
Z
oD\Cc

EdA; ð10Þ

Q ¼ �
Z
oDnCc

q 
 ndA ð11Þ

and

S ¼
Z
D

qsdV þ
Z
oD\Cc

S dA; ð12Þ

where q is the mass density, e the specific internal energy, s the specific entropy, E the surfacic density of

internal energy on Cc and S the surfacic density of entropy on Cc.

By inserting (1) and (2), evaluated for the real velocity _uu, and (10) and (11) into the first law (8), applying

the divergence theorem and using the fact that the part D is arbitrary, the following local statements of the
first law are obtained:

q _ee ¼ r : �ð _uuÞ � divq in X ð13Þ

and

_EE ¼ p 
 _uuþ q 
 n on Cc: ð14Þ

Next, by inserting (12) into (9), applying the divergence theorem, utilizing

div
q

T

� �
¼ 1

T
divq� q 
 rT

T 2

and utilizing the same identity for c=T one obtains the following local statements of the second law:

q_ssT þ divqþ divc � ðqþ cÞ 
 rT
T

P 0 in X ð15Þ

and

_SST � q 
 n� c 
 nP 0 on Cc: ð16Þ

Furthermore, by inserting (13) and (14) into (15) and (16), respectively, and introducing the specific and

surfacic Helmholtz free energies w ¼ e� sT and W ¼ E � ST , respectively, one can rewrite these inequali-
ties to obtain the following Clausius–Duhem inequalities:

r : �ð _uuÞ � q _ww � qs _TT þ divc � ðqþ cÞ 
 rT
T

P 0 in X ð17Þ

and

p 
 _uu� _WW � S _TT � c 
 nP 0 on Cc: ð18Þ

Note that the above arguments can be reversed. That is, (13), (14), (17) and (18) are equivalent to the

basic principles of thermodynamics (8) and (9).
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2.3. General constitutive assumptions

In this subsection we formulate some general constitutive assumptions for damage coupled to contact,

friction and wear as state laws and complementary laws, defined by means of free energies and dual dis-
sipation potentials, respectively. We prove that these constitutive assumptions are sufficient for satisfaction

of the local Clausius–Duhem inequalities (17) and (18).

Before defining the free energies, state laws, etc., we need to define our state variables. In addition to the

observable variables u (or �ðuÞ) and T , we assume that damage, friction and wear can be measured using

four internal state variables. Damage is measured using the scalar variable a, and its gradient ra, which is

treated as a separate variable when the free energies are defined. The damage variable a takes values in the

interval ½0; 1�, where a ¼ 0 corresponds to undamaged material and a ¼ 1 corresponds to completely

damaged material. Friction is measured by introducing the irreversible tangential displacement, uit as an
internal state variable. Finally, wear is measured by using the scalar variable x, interpreted as an extra gap

between the body and the support.

For the bulk material we consider a class of free energies defined by

w ¼ wð�; T ; a;raÞ in X; ð19Þ
where w is assumed to be a smooth function and � ¼ �ðuÞ.

For the contact interface we consider the following class of free energies:

W ¼ Wðun; ut; uit;x; a; T Þ on Cc; ð20Þ

where W is convex with respect to ðun; ut; uit;xÞ and smooth with respect to a and T .
We define the following state laws for the body:

r ¼ q
ow
o�

in X; ð21Þ

s ¼ � ow
oT

in X; ð22Þ

A ¼ �q
ow
oa

þ div q
ow

oðraÞ

� �
in X ð23Þ

and

c ¼ q
ow

oðraÞ _aa in X; ð24Þ

where Eq. (23) defines a thermodynamic force A related to _aa and Eq. (24) defines the extra entropy flux.

For the contact interface the following state laws are defined:

ðpn; pt;�pit;�WÞ 2 oWðun; ut; uit;x; a; T Þ on Cc; ð25Þ

A ¼ � oW
oa

on Cc ð26Þ

and

S ¼ � oW
oT

on Cc; ð27Þ

where o denotes the partial subdifferential with respect to the arguments before �;�. Here A is a force similar

to A, pi is an internal force related to _uuit and W is an internal force related to _xx.
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Furthermore, we assume the existence of so-called dual dissipation potentials /ðA;pÞ, parameterized by

p ¼ ð�; aÞ, and Uðpit;W;R;PÞ, parameterized by P ¼ ðpn;x; aÞ and where R is defined by

R ¼ A� q
ow

oðraÞ 
 n: ð28Þ

Note that R is the driving force for _aa on Cc, see Proposition 1 below. The dissipation potentials are convex

functions satisfying the conditions:

/ð0; pÞ ¼ 0; 0 2 o/ð0; pÞ; ð29Þ

Uð0; 0; 0;PÞ ¼ 0 and ð0; 0; 0Þ 2 oUð0; 0; 0;PÞ: ð30Þ

The following complementary laws are defined for the body:

_aa 2 o/ðA; pÞ in X ð31Þ

and for the contact interface

ð _uuit; _xx; _aaÞ 2 oUðpit;W;R;PÞ on Cc: ð32Þ

Finally we assume that the following inequality holds:

�ðqþ cÞ 
 rT
T

P 0 in X: ð33Þ

This is the generalized thermal dissipation inequality due to Maugin (1990). In that paper it was also

suggested a law of Fourier type for the quantity ðqþ cÞ.
Let us now prove that Eqs. (19)–(33) are sufficient conditions for satisfaction of the Clausius–Duhem

inequalities (17) and (18) when time derivatives are regarded as left-hand derivatives. This follows from the

three propositions presented below. The choice of left-hand time derivatives is crucial when establishing

Proposition 3.

Proposition 1. The complementary laws (31) and (32) and the conditions (29) and (30) ensure that the following

residual dissipation inequalities are satisfied:

A _aaP 0 in X; ð34Þ

pit 
 _uuit þW _xx þR _aa P 0 on Cc; ð35Þ

Proof. Let us prove that (31) is sufficient for satisfaction of (34). The proof is standard and follows the idea

of Moreau (1974). The definition of the subdifferential in (31) and the condition (29)1 imply that

0 ¼ /ð0; pÞP /ðA;pÞ þ _aað0� AÞ:

Taken with (29)2, the inequality above implies that

A _aaP /ðA; pÞP 0:

The fact that (32) is sufficient for satisfaction of (35) is shown using (30) in a similar way. This concludes

the proof. �

Proposition 2. The free energy (19), the state laws (21)–(24), the assumption (33) and the residual dissipation

inequality (34) ensure satisfaction of the Clausius–Duhem inequality (17).
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Proof. By using the chain rule of differentiation on (19) and multiplying by q it follows that

q
ow
o�

: _��þ q
ow
oT

_TT þ q
ow
oa

_aa þ q
ow

oðraÞ 
 r
_aa � q _ww ¼ 0:

By adding this equality and the inequalities (33) and (34), using

q
ow

oðraÞ 
 r _aa ¼ div q
ow

oðraÞ _aa
� �

� _aadiv q
ow

oðraÞ

� �

and inserting (21)–(24) the Clausius–Duhem inequality (17) is recovered. This concludes the proof. �

Proposition 3. The free energy in (20), the state laws (25)–(27), (28) and the residual dissipation inequality (35)

ensure satisfaction of (18).

Proof. Letting t denote time, the left-hand time derivative of W is by definition

_WW ¼ lim
Dt!0
Dt>0

WðtÞ � Wðt � DtÞ
Dt

¼ lim
Dt!0
Dt>0

WðtÞ � Wðunðt � DtÞ; utðt � DtÞ; uitðt � DtÞ;xðt � DtÞ; aðtÞ; T ðtÞÞ
Dt

þ oW
oa

_aa þ oW
oT

_TT :

Furthermore, the definition of the subdifferential in (25) implies that

Wðunðt � DtÞ; utðt � DtÞ; uitðt � DtÞ;xðt � DtÞ; aðtÞ; T ðtÞÞ
P WðtÞ þ pnðunðt � DtÞ � unðtÞÞ þ pt 
 ðutðt � DtÞ � utðtÞÞ

� pit 
 ðuitðt � DtÞ � uitðtÞÞ �Wðxðt � DtÞ � xðtÞÞ;

where the subdifferential is evaluated at time t. Now, dividing by Dt > 0 and using the definition of left-

hand time derivative above one finds that

pn _uun þ pt 
 _uut � pit 
 _uuit �W _xx �A _aa � S _TT � _WW P 0;

where (26) and (27) have also been used. Finally, by adding the inequality (35) and using (7), (24) and (28),

the inequality (18) is recovered. This concludes the proof of the proposition as well as the statement that

(19)–(33) are sufficient conditions for satisfaction of the Clausius–Duhem inequalities (17) and (18). �

At this point it is worth to note that for the special case when the free energy of the contact interface is

the sum of an indicator function and a smooth function, it is possible to prove that the last proposition

above also holds when time derivatives are regarded as right-hand derivatives, see Str€oomberg (1997).

3. Specific constitutive assumptions

In this section we propose specific forms of the free energies and the dual dissipation potentials, leading

to a model of damage coupled to wear. The model is intended for studying crack initiation in fretting

problems. Here we do not consider thermal effects. The constitutive equations defining the model of
damage coupled to wear are summarized in the end of the section. Finally, two variational formulations of

the full problem are presented.
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3.1. Constitutive model for the body

For the bulk material we use a simplified version of the model suggested by Fr�eemond and Nedjar (1996).

It is simplified in the sense that it does not distinguish between the response in tension and compression.
This feature was introduced in the model suggested by Fr�eemond and Nedjar (1996) by defining the free

energy and the dissipation potential in such a fashion that only the positive part of the strain tensor will

contribute to the evolution of damage.

The proposed model for rate-independent damage, including the gradient of the damage variable,

coupled to linear elasticity, is defined by the following free energy:

w ¼ 1
2q½ð1� aÞðktrð�Þ2 þ 2G� : �Þ þ cðraÞ2�; a 2 ½0; 1�;

where tr represents the trace of a tensor, k and G are Lame�s elasticity coefficients and c is a constitutive
constant that measures the influence of the damage of a point on its neighborhood, hence controlling the

size of the damaged zone. Furthermore, the dual dissipation potential is taken as

/ðA; �; aÞ ¼ IBð�;aÞðAÞ;

where IKðxÞ denotes the indicator function of a set K, i.e. a function that takes the value 0 if x 2 K and þ1
otherwise, and

Bð�; aÞ ¼ fA : A� 1
2
aðktrð�Þ2 þ 2G� : �Þ � W 6 0g:

Here W > 0 is a constitutive parameter representing the strain energy threshold for initiation of damage.

The state laws (21) and (23) imply for this choice of free energy that

r ¼ ð1� aÞðktrð�ÞI þ 2G�Þ
and

A ¼ 1
2
ðktrð�Þ2 þ 2G� : �Þ þ cDa; ð36Þ

where D ¼ divr denotes the Laplacian. Moreover, the complementary law in (31) implies for the choice of

dissipation potential above that

A 2 Bð�; aÞ : _aaðA0 � AÞ6 0 8A0 2 Bð�; aÞ;
or, equivalently,

_aaP 0; h6 0; _aah ¼ 0;

where

h ¼ 1
2
ð1� aÞðktrð�Þ2 þ 2G� : �Þ þ cDa � W :

Here, the explicit expression of A given by (36) has also been utilized.

3.2. Constitutive model for the contact interface

In this subsection a simple model for the contact interface introducing a coupling between wear and bulk

damage is suggested. The model is designed such that the driving force of damage on the contact surface

tends to zero as the damage approaches one. In such a manner situations where the coupled wear-damage

problem obviously lacks solution is avoided.

The model is defined by the following free energy for the contact interface:

Wðun; ut; uit;x; aÞ ¼ ICðun;xÞ þ IDðut; uitÞ þ 1
2
ð1� aÞ2jx; ð37Þ
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where j is a constitutive parameter which is discussed at the end of this section,

C ¼ fðun;xÞ : un � x � g6 0g;
g is the initial contact gap and

D ¼ fðut; uitÞ : ut � uit ¼ 0g:
In addition, the dual dissipation potential of the contact surface is taken to be

Uðpit;W;R; pn; aÞ ¼ IFðpn;aÞðpit;WÞ þ IGðRÞ;

where

Fðpn; aÞ ¼ fðpt;WÞ : jptj þ kWpn 6 lðpnÞþ þ kðpn � 1
2
ð1� aÞ2jÞpng;

l is the friction coefficient, k is the wear coefficient, ðxÞþ ¼ maxð0; xÞ and
G ¼ fR : R ¼ 0g:

The state law in (25) implies for this choice of free energy that

pn P 0; un � x � g6 0; pnðun � x � gÞ ¼ 0; ð38Þ

W ¼ pn � 1
2
ð1� aÞ2j ð39Þ

and pt ¼ pit, with pt 2 R2 arbitrary. The conditions in (38) are the Karush–Kuhn–Tucker conditions to the

following variational principle:

pn 2 Kn : ðun � x � gÞðqn � pnÞ6 0 8qn 2 Kn;

where

Kn ¼ fpn : pn P 0g:
Furthermore, the state law in (26) generates

A ¼ ð1� aÞjx: ð40Þ
The complementary law in (32) implies, for the choice of dissipation potential above, a sliding rule of

Coulomb type, i.e.

pt 2 fFFðpnÞ : _uuit 
 ðqt � ptÞ6 0 8qt 2 fFFðpnÞ ð41Þ
and a wear law of Archard type, i.e.

_xx ¼ kpnj _uuitj;
where the set

fFFðpnÞ ¼ fpt : jptj6 lðpnÞþg;

defining Coulomb�s cone, is obtained by inserting the explicit expression of W given by (39) into the set

FðpnÞ and on using that pt ¼ pit. Coulomb�s law is expressed in (41) as a principle of maximal dissipation.

This is equivalent to the following way of expressing Coulomb�s law:

j _uutjpt ¼ _uutlðpnÞþ; jptj6 lðpnÞþ:

Here, ut ¼ uit has also been used, which is a consequence of the definition of the set D. Furthermore, (32)

implies _aa arbitrary and R ¼ 0 by the definition of the set G, which in turn yields, using (28) and (40),

n 
 cra ¼ ð1� aÞjx:
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3.3. Summary of constitutive equations

In conclusion, the proposed constitutive model for damage coupled to wear can be summarized as

follows:

r ¼ ð1� aÞðktrð�ÞI þ 2G�Þ in X; ð42Þ

cDa ¼ A� 1
2
ðktrð�Þ2 þ 2G� : �Þ in X; ð43Þ

A 2 Bð�; aÞ : _aaðA0 � AÞ6 0 8A0 2 Bð�; aÞ in X; ð44Þ

n 
 cra ¼ 0 on oX n Cc; ð45Þ

n 
 cra ¼ ð1� aÞjx on Cc; ð46Þ

pn 2 Kn : ðun � x � gÞðqn � pnÞ6 0 8qn 2 Kn on Cc; ð47Þ

pt 2 fFFðpnÞ : _uut 
 ðqt � ptÞ6 0 8qt 2 fFFðpnÞ on Cc; ð48Þ

_xx ¼ kpnj _uutj on Cc: ð49Þ
The first four Eqs. (42)–(45) are bulk properties similar to the damage models suggested by Fr�eemond and

Nedjar (1996) and Nedjar (2001). The last three Eqs. (47)–(49) are tribological laws suggested in Str€oomberg

et al. (1996). The remaining Eq. (46) expresses the experimental fact that the fatigue performance usually is

decreased when a body is subjected to fretting conditions, see e.g Hills and Nowell (1994). This fact is here

modelled by letting the damage flux depend on the amount of wear, which in turn depends on the amount

of oscillatory slip. Thus, j is a constitutive parameter that governs this dependency.
It is also worth to note that the free energy in (37) is chosen in such a way that A ! 0 as a ! 1. Another

choice of free energy leading to e.g.

n 
 cra ¼ jx on Cc

would be troublesome. Since x is non-decreasing the condition above then requires that ra increases. One

might think of situations where the only possibility to obtain this is for a to increase where it is already one
and this is impossible since a 2 ½0; 1�. Thus, the problem might lack solution. Since in the present case

n 
 cra 
 n ! 0 as a ! 1 at the contact this difficulty is avoided.

3.4. Variational formulations

To conclude this section, we present two variational formulations of the full boundary value problem

defined by the equilibrium equations (4)–(6) and the constitutive relations summarized in Eqs. (42)–(49). The

full problem reads: Given proper initial conditions and a load history tðtÞ on a time interval ½0; s� find u :
½0; s� ! V, pn : ½0; s� ! cKKn, pt : ½0; s� ! fFFðpnÞ, a : ½0; s� ! cTT and A : ½0; s� ! bBB such that for each time

t 2 ½0; s�Z
X

r : �ðvÞdV �
Z

Ct

t 
 vdAþ
Z

Cc

p 
 vdA ¼ 0 8v 2 V; ð50Þ

Z
Cc

ðqn � pnÞðun � x � gÞdA6 0 8qn 2 fKKn; ð51Þ

Z
Cc

ðqt � ptÞ 
 _uut dA6 0 8qt 2 fFFðpnÞ; ð52Þ
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Z
X
cra 
 rbdV þ

Z
X
AbdV � 1

2

Z
X
ðktrð�Þ2 þ 2G� : �ÞbdV �

Z
Cc

ð1� aÞjxbdA ¼ 0 8b 2 cTT; ð53Þ

Z
X

_aaðA0 � AÞdV 6 0 8A0 2 bBB; ð54Þ

where, in addition, (42) is inserted and the evolution of x is governed by (49). Furthermore, the following
notations for function spaces are used:

V ¼ fv : vðxÞ ¼ 0; x 2 Cug;

fKKn ¼ fpn : pnðxÞP 0; x 2 Ccg;

fFFðpnÞ ¼ fpt : jptðxÞj6 lðpnðxÞÞþ; x 2 Ccg;

cTT ¼ fb : 06 bðxÞ < 1; x 2 Xg

and

bBB ¼ fA : AðxÞ � 1
2
aðxÞðktrð�ðuðxÞÞ2 þ 2G�ðuðxÞ : �ðuðxÞÞÞ � W 6 0; x 2 Xg:

An alternative formulation is obtained by replacing (53) and (54) by the following variational expres-

sions: Find a : ½0; s� ! cTT and h : ½0; s� ! cHH such that for each time t 2 ½0; s�Z
X
cra 
 rbdV þ

Z
X
hbdV � 1

2

Z
X
ð1� aÞðktrð�Þ2 þ 2G� : �ÞbdV þ

Z
X
W b �

Z
Cc

ð1� aÞjxbdA ¼ 0

8b 2 cTT ð55Þ

and Z
X

_aaðh0 � hÞdV 6 0 8h0 2 ĤH; ð56Þ

where

cHH ¼ fh : hðxÞ6 0; x 2 Xg:

This formulation is obtained by using the alternative formulation of (43) and (44) given at the end of

Section 3.1.
The variational formulations presented above are intended to be used as starting points for a finite ele-

ment discretization of the problem and in a future study it will be investigated if one formulation is perhaps

preferred from a numerical point of view.

4. An example

In this section a one-dimensional example is studied in order to discuss the basic behaviour of the

fretting damage model and the influence of the various constitutive parameters. The discussion is based on

numerical solutions obtained by a finite element approach.

Consider a homogenous bar of length L, Young�s modulus E and cross-sectional area A in unilateral

wearing contact with a rigid support moving with a given constant velocity n, see Fig. 2.
Under the given circumstances the following one-dimensional problem can be stated from Eqs. (4)–(6)

and (42)–(49): Find uðxÞ, aðxÞ and P such that
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d

dx
ð1

	
� aÞE du

dx



¼ 0 in ð0; LÞ;

uð0Þ ¼ 0; ð1� aðLÞÞEA duðLÞ
dx

¼ �P ;

P P 0; uðLÞ � x � g6 0; P ðuðLÞ � x � gÞ ¼ 0;

_xx ¼ k
P
A

n;

_aaP 0; h6 0; _aah ¼ 0 in ð0; LÞ;

h ¼ 1

2
ð1� aÞE du

dx

� �2

þ c
d2a
dx2

� W in ð0; LÞ

ð57Þ

and

dað0Þ
dx

¼ 0; c
daðLÞ
dx

¼ ð1� aðLÞÞjx;

where P is the normal contact force.

Fig. 2. A bar in unilateral wearing contact with a moving rigid support.
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Fig. 3. Contact force versus wear gap evolution for W ¼ 1.
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This problem is solved numerically using a finite element approach based on the one-dimensional cor-
respondence to the second variational formulation presented in the previous section. The fields uðxÞ, aðxÞ
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Fig. 4. Contact force versus wear gap evolution for c ¼ 0:01, j ¼ 10 and different values of W .
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Fig. 5. The distribution of damage when P ¼ 0 for W ¼ 1.
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and hðxÞ are approximated using piecewise linear polynomials and time rates are replaced by Euler-

backward differences. Furthermore, the variational inequalities corresponding to the contact conditions

and the damage evolution law is restated as equations by means of projections, (Klarbring, 1992). This is

done in such a manner that the discrete correspondence to the complementary conditions (57) are satisfied
at each nodal point. The result is a system of semi-smooth equations which is solved by a modified Newton

method suggested by Pang (1990). The method is similar to the Newton method presented in Ireman et al.

(2002). In a forthcoming paper the variational formulations will be studied numerically in detail for two-

dimensional problems.

Just to get a qualitative response, we choose E ¼ 1 [Pa], A ¼ 1 [m2], L ¼ 1 [m], g ¼ �0:1 [m], c either

equal to 0.1, 0.05 or 0.01 [N], W equal to 1, 0.1 or 0.01 [Pa] and j equal to 5 or 10 [Pa]. By studying the

governing equations it is concluded that k (units [m2/N]) and n (units [m/s]) have no independent influence

on the response and their product has no other influence than introducing a time scale: a higher value
corresponds to a faster wear process. The calculations are terminated when the contact force vanishes, i.e

when the initial gap is worn away. The results are from calculations where 41 nodes were used.

Fig. 3 shows the evolution of the contact force versus the evolution of the wear gap for W ¼ 1 and

different values of j and c. For these sets of parameters the contact state is fairly uninfluenced by the

damage, i.e. the contact force–wear gap evolution remains close to linear. But as seen from Fig. 4, by

lowering the threshold W the contact state becomes more influenced by the evolution of damage.

The distribution of damage when the initial gap is worn away is depicted in Fig. 5 for W ¼ 1 and diffe-

rent values of c and j and in Fig. 6 for c ¼ 0:01, j ¼ 10 different values of W .
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Fig. 6. The distribution of damage when P ¼ 0 for c ¼ 0:01, j ¼ 10 and different values of W .
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It is seen from Fig. 5 how a larger value of j give rise to more damage and how the parameter c controls
the size of the damaged zone. From Fig. 6 it is seen that lowering the threshold W also gives rise to more

wide-spread damage, e.g. for W ¼ 0:01 damage spreads to the entire bar.
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Fig. 8. The evolution of damage at the contact (x ¼ L) for c ¼ 0:01, j ¼ 10 and different values of W .
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Fig. 7. The evolution of damage at the contact site (x ¼ L) for W ¼ 1.
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Finally, let us consider the evolution of the damage at the contact site x ¼ L, shown in Figs. 7 and 8. The

time scale is chosen such that one time unit is the longest time it takes to wear away the initial gap for the

parameters considered (in this case when c ¼ 0:01, W ¼ 0:01 and j ¼ 10).

5. Concluding remarks

The objective of the present work has been to present an as simple model as possible for isotropic

damage coupled to wear, regarded as a first attempt to formulate a continuum model for studying crack
initiation in fretting fatigue. The model is based on a continuum damage model including the gradient of

the damage variable. This implies that the evolution of this variable is governed by a boundary value

problem. The boundary conditions are used to introduce a coupling between bulk damage and wear at the

contact interface. In this respect an additional constitutive parameter is introduced. This parameter reflects

the experimental fact that the nucleation of micro-cracks at the surface depends on the amplitude of relative

slip. The model is established within a thermo-mechanical framework where satisfaction of the principles of

thermodynamics is assured. A simple one-dimensional example shows the basic behaviour of the model, i.e.

quantitatively how the different parameters influence the coupling between damage and wear.
Our future plans is to develop a numerical method for solving the full boundary value problem presented

above and to provide numerical results for more representative two-dimensional examples using relevant

values of the constitutive parameters. Furthermore, the model needs to be further developed, for instance

by including a coupling to plasticity in order to better describe the evolution of damage in a ductile ma-

terial. Finally, in order to study fatigue crack initiation in metallic components in the high cycle fatigue

regime, one should also consider fatigue damage models.
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