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Abstract

The present paper presents a model of damage coupled to wear. The damage model is based on a continuum model
including the gradient of the damage variable. Such a model is non-local in the sense that the evolution of damage is
governed by a boundary-value problem instead of a local evolution law. Thereby, the well-known mesh-dependency
observed for local damage models is removed. Another feature is that the boundary conditions can be used to introduce
couplings between bulk damage and processes at the boundary. In this work such a coupling is suggested between bulk
damage and wear at the contact interface. The model is regarded as a first attempt to formulate a continuum damage
model for studying crack initiation in fretting fatigue.

The model is given within a thermodynamic framework, where it is assured that the principles of thermodynamics
are satisfied. Furthermore, two variational formulations of the full initial boundary value problem, serving as starting
points for finite element discretization, are presented. Finally, preliminary numerical results for a simple one-dimen-
sional example are presented and discussed. It is qualitatively shown how the evolution of damage may influence the
wear behaviour and how damage may be initiated by the wear process.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present paper presents an isotropic damage model coupled to contact, friction and wear. The model
is regarded as a first attempt to formulate a continuum model for studying the crack initiation phase in so-
called fretting fatigue phenomena, see e.g. Hills and Nowell (1994). Fretting fatigue is observed in a number
of machine elements involving mechanical contacts where the contacting bodies are subjected to small
relative oscillatory motions, such as splines, shrink-fits, bolted joints, lugs, etc. This type of contact con-
ditions (fretting) decrease the fatigue performance. Typically cracks are developed at or near the contacting
surfaces which might grow to a critical size leading to fracture.

The damage model utilized here is much based on the works by Frémond and Nedjar (1996) and Nedjar
(2001). The models proposed in these papers include the gradient of the damage variable. Such a model is
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non-local in the sense that the evolution of the damage variable is governed by a boundary value problem
instead of a local evolution law. The use of a non-local model removes the well-known mesh-dependency
observed when local damage models are solved numerically, see e.g Frémond and Nedjar (1996). Another
feature of the non-local model is that the boundary condition of the evolution problem might be used to
introduce a coupling between damage and processes at the boundary, for instance chemical reactions. In
our case we will assume that wear increases damage. Therefore, a coupling between wear and damage is
introduced at the contact interface. Thus, we assume that fretting conditions can be described by an internal
state variable measuring wear and that the experimental fact that fatigue performance is decreased when a
body is subjected to fretting conditions can be modelled by letting the damage flux depend on this particular
variable.

The thermodynamic framework outlined here is somewhat different from that used by Frémond and
Nedjar (1996), where the principle of virtual power was modified taking micro-motions of damage into
account. Here an internal state variable formalism is used, where a scalar variable and its gradient are
internal state variables for measuring damage. In addition two internal state variables are introduced on the
contact interface; one measuring tangential slip and another measuring wear. By using these internal state
variables together with the displacement and the temperature, a constitutive model is formulated using state
laws defined by free energies and complementary laws defined by dual dissipation potentials in the spirit of
generalized standard materials (Halphen and Nguyen, 1975), both for the body and the contact interface.
The formulation of the state laws for the bulk of the body follows essentially Maugin (1990) and resembles
those of other general frameworks for gradient theories, e.g. Svedberg and Runesson (1997) and Lorentz
and Andrieux (1999). An important difference between the framework used here and those of the two latter
is that all basic principles are in this work given as local postulates, while the formulation of Svedberg and
Runesson (1997) and Lorentz and Andrieux (1999) are valid only for global considerations. A way to
preserve the local structure of the basic principles is to introduce an extra entropy flux in the second
principle of thermodynamics due to Maugin (1990). In fact, it is possible to show that this framework is
equivalent to the framework of Frémond and Nedjar (1996). Here the formulation of Maugin (1990) is
extended by a coupling to processes at a contact boundary. The way of formulating constitutive laws for a
contact interface by a free energy and a dissipation potential, an idea that originates from Frémond (1987,
1988), has been utilized in Klarbring (1990), Johansson and Klarbring (1993) and Stromberg et al. (1996) to
formulate constitutive relations for contact, friction and wear.

This study is organized as follows: In Section 2 a general model of damage coupled to wear is derived by
use of the principle of virtual power and in accordance with the principles of thermodynamics. In Section 3
a specific model for damage coupled to wear within the proposed thermodynamic framework is suggested
and discussed. The model is intended for studying crack initiation in fretting problems. Finally, two
variational formulations of the governing equations are given. In Section 4 the behaviour of the suggested
model is discussed, based on numerical solutions of a simple one-dimensional example.

2. Derivation of a general model

In this section we derive a general model for isotropic damage of an elastic body in unilateral frictional
wearing contact with a rigid support. The model is restricted to quasi-static small-displacement evolutions.
Firstly, equilibrium equations and local Clausius—-Duhem inequalities are derived from the principle of
virtual power and the basic principles of thermodynamics, where an extra entropy flux, as suggested by
Maugin (1990), is introduced. Secondly, constitutive assumptions are formulated using state laws defined
by gradients (or subdifferentials) of free energies and complementary laws defined by subdifferentials of
dual dissipation potentials. The model uses an internal variable representation of the state for the body and
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Fig. 1. A deformable body, unilaterally constrained by a rigid obstacle.

the contact interface, respectively. Finally, it is proved that these constitutive assumptions fulfill the
Clausius—Duhem inequalities.

Let a region Q C R (d = 2,3) with piecewise smooth boundary dQ be occupied by a continuously
deformable body, see Fig. 1. The boundary 012 is divided into three disjoint parts: I', C 0Q where tractions ¢
are prescribed, I', C 0Q with fixed displacements and I'. C 0Q2 which is unilaterally constrained by a fixed
rigid obstacle. This potential contact surface is considered as a material boundary following the idea of
Frémond (1987, 1988), i.e. it is possible to define state laws by a free energy and complementary laws by a
dissipation potential on I..

2.1. The principle of virtual power

In this subsection the method of virtual power in the sense of Germain (1973a,b) and Maugin (1980) is
used to derive equilibrium equations and to identify the internal forces with the Cauchy stress tensor and
the contact traction vector, respectively.

Assuming quasi-static evolutions the principle of virtual power reads: for any part & C Q,

P+P.=0 Ve, (1)

where 7" is the set of kinematically admissible velocity fields in Q. The virtual power of the internal and
external forces, respectively, are defined by

E:—/a;e(a)dr/—/ p-vda 2)
and
P = / ¢ 9dd, (3)
I\T .

where (:) and (-) represent inner products between tensors and vectors, respectively, ¢ is a symmetric in-
ternal stress tensor and p is an internal force vector, respectively. Furthermore,

e(u) =5(Vu+Vu'),
where V represents the gradient of a scalar or a vector. In the following # will denote the displacement
vector.

By inserting (2) and (3) into (1), applying the divergence theorem and the fact that & C Q is arbitrary,
the following local equilibrium equations are obtained:

dive =0 in 2, 4)
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en=ton o7\ T, (5)

on=—pondyNIr,, (6)

where n is the outward unit normal vector to 0%. The symmetry of ¢ and Egs. (4) and (5) imply that ¢ can
be identified as the Cauchy stress tensor. Furthermore, Eq. (6) implies that p can be identified as the contact
traction vector (with reversed sign).

In the following development the contact traction vector as well as the displacement vector on I'. will be
decomposed into normal components and tangential vectors according to

po=p-n, p=U-—nomp, uw,=u-n _u=>I-nnpu, (7)

where I represents the identity tensor and ® is the tensor product of two vectors.

2.2. The principles of thermodynamics

In this subsection we derive a local Clasius—Duhem inequality from the basic principles of thermo-
dynamics, as they are postulated by Maugin (1990), by introducing the Helmholtz free energies of the body
and the contact surface, respectively. The derivation is non-classical in the sense that an extra entropy flux
related to damage flux is added.

Assuming that the internal heat production is zero and adopting the quasi-static assumption, the two
basic principles of thermodynamics are postulated as: for any part ¥ C Q

&=P +2 (8)
and
92—/ 177 nda, 9)
oanr. T

where & is the internal energy, P, is the power of the external forces defined by (3) evaluated for the real
velocity field &, 2 is the heat supply per time unit, & is the entropy, ¢ is the heat flux vector and 7 is the
absolute temperature. Furthermore, the quantity y is an extra entropy flux connected with other diffusive
mechanisms than heat flux. A superimposed dot denotes a time derivative.

Due to the nature of contact, friction and damage, the state is not necessarily smooth in time. Thus, we
need eventually to choose between regarding time-derivatives as left-hand derivatives or right-hand de-
rivatives when rates of the state are expressed. This choice must reflect the nature of constitutive relations
and affects the interpretation of the Clausius—Duhem inequality. A strong requirement is that one should be
able to prove that the Clausius—Duhem inequality is satisfied at each time instant both for left-hand and
right-hand time derivatives, a looser requirement is that it is sufficient to show that it is satisfied for left-
hand time derivatives. An argument for the latter can be found in Frémond and Nedjar (1996), ! where it is
stated that constitutive relations are relations between quantities at the present state that should be com-
puted using information about the past evolution, i.e. time derivatives are naturally regarded as left-hand
derivatives. However, the stronger requirement that the Clausius—Duhem inequality should be satisfied
both for left-hand and right-hand time derivatives can be fulfilled also in the non-smooth case by con-
sidering special forms of the free energy. In Stromberg (1997) it was shown that if the free energy is the sum

I “We know that the constitutive laws are objective relations, i.e. relations which are computed at time ¢ with the available
information given by the past history of the material, i.e. by its past evolution. It results that in the constitutive laws the derivatives
with respect to the time are left derivatives.”, Frémond and Nedjar (1996).
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of a smooth function and an indicator function of a convex set, described by a smooth function, this is
indeed the case.
The internal energy, the heat supply per time unit and the entropy are defined by

(o@:/pedV—i—/ Ed4, (10)
7 T
Q:—/ q-nd4 (11)
AT
and
V:/pst—F/ Sd4, (12)
7 9T,

where p is the mass density, e the specific internal energy, s the specific entropy, £ the surfacic density of
internal energy on I'. and S the surfacic density of entropy on I'..

By inserting (1) and (2), evaluated for the real velocity &, and (10) and (11) into the first law (8), applying
the divergence theorem and using the fact that the part & is arbitrary, the following local statements of the
first law are obtained:

pe=o0:€()—divg in Q (13)
and
E=p-ut+gq-n onT.. (14)
Next, by inserting (12) into (9), applying the divergence theorem, utilizing
. (q I . vT
le(f) = leVq —q- F

and utilizing the same identity for y/7 one obtains the following local statements of the second law:

. . vTr .
p&T+d1vq+d1vy—(q+y)-? >0 inQ (15)

and
ST—q-n—y-n>=0 onl,. (16)

Furthermore, by inserting (13) and (14) into (15) and (16), respectively, and introducing the specific and
surfacic Helmholtz free energies y = e — sT and ¥ = E — ST, respectively, one can rewrite these inequali-
ties to obtain the following Clausius—Duhem inequalities:

. . T
0':e(l'l)—plﬁ—psT+divy—(q+y)~VT >0 inQ (17)

and
piu—¥—-ST—y-n=0 onl.. (18)

Note that the above arguments can be reversed. That is, (13), (14), (17) and (18) are equivalent to the
basic principles of thermodynamics (8) and (9).
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2.3. General constitutive assumptions

In this subsection we formulate some general constitutive assumptions for damage coupled to contact,
friction and wear as state laws and complementary laws, defined by means of free energies and dual dis-
sipation potentials, respectively. We prove that these constitutive assumptions are sufficient for satisfaction
of the local Clausius—Duhem inequalities (17) and (18).

Before defining the free energies, state laws, etc., we need to define our state variables. In addition to the
observable variables u (or e€(u)) and T, we assume that damage, friction and wear can be measured using
four internal state variables. Damage is measured using the scalar variable «, and its gradient Ve, which is
treated as a separate variable when the free energies are defined. The damage variable o takes values in the
interval [0, 1], where o = 0 corresponds to undamaged material and o = 1 corresponds to completely
damaged material. Friction is measured by introducing the irreversible tangential displacement, #! as an
internal state variable. Finally, wear is measured by using the scalar variable w, interpreted as an extra gap
between the body and the support.

For the bulk material we consider a class of free energies defined by

v =y(e T o Va) in Q, (19)

where i is assumed to be a smooth function and € = e(u).
For the contact interface we consider the following class of free energies:

Y = ¥(u,,u,u,0;0,T) on I, (20)

where ¥ is convex with respect to (u,,u,,u,») and smooth with respect to o and 7.
We define the following state laws for the body:

6= p% in Q, (21)
oy
=—7p In Q, (22)

0 . 0 .
A——palO/:erlv(pa(ga)) in Q (23)
and

L .

y pm in Q, (24)

where Eq. (23) defines a thermodynamic force 4 related to & and Eq. (24) defines the extra entropy flux.
For the contact interface the following state laws are defined:

(pnapta _Pi, _W) € agl(umutv”;v ;5 o, T) on Fm (25)
oY
of = ~%, °n I, (26)
and
oY
S:—a—T on I, (27)

where 0 denotes the partial subdifferential with respect to the arguments before ;. Here .o/ is a force similar
to 4, p' is an internal force related to # and #" is an internal force related to .
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Furthermore, we assume the existence of so-called dual dissipation potentials ¢(4; ), parameterized by
n = (e,0), and @(p!, W, #;11), parameterized by IT = (p,, w, o) and where Z is defined by

(28)
Note that £ is the driving force for & on I'., see Proposition 1 below. The dissipation potentials are convex

functions satisfying the conditions:
¢(0;m) =0, 0€dp(0;m), (29)

®(0,0,0;I1) =0 and (0,0,0) € 0¢(0,0,0;IT). (30)
The following complementary laws are defined for the body:

o € 0¢p(4;m) in Q (31)
and for the contact interface

(i, ,0) € 00(pl, W', #;11) on I.. (32)

Finally we assume that the following inequality holds:

T
—(q+y)~v7 >0 in Q. (33)
This is the generalized thermal dissipation inequality due to Maugin (1990). In that paper it was also
suggested a law of Fourier type for the quantity (g + y).

Let us now prove that Egs. (19)—(33) are sufficient conditions for satisfaction of the Clausius—Duhem
inequalities (17) and (18) when time derivatives are regarded as left-hand derivatives. This follows from the

three propositions presented below. The choice of left-hand time derivatives is crucial when establishing
Proposition 3.

Proposition 1. The complementary laws (31) and (32) and the conditions (29) and (30) ensure that the following
residual dissipation inequalities are satisfied:

A6 =0 in Q, (34)

P+ W+ RL=0 on I, (35)

Proof. Let us prove that (31) is sufficient for satisfaction of (34). The proof is standard and follows the idea
of Moreau (1974). The definition of the subdifferential in (31) and the condition (29); imply that

0=0¢0;7) = ¢p(4;7) + (0 — A).
Taken with (29),, the inequality above implies that
Ad > (4; ) = 0.
The fact that (32) is sufficient for satisfaction of (35) is shown using (30) in a similar way. This concludes

the proof. [

Proposition 2. The free energy (19), the state laws (21)—(24), the assumption (33) and the residual dissipation
inequality (34) ensure satisfaction of the Clausius—Duhem inequality (17).



2964 P. Ireman et al. | International Journal of Solids and Structures 40 (2003) 2957-2974

Proof. By using the chain rule of differentiation on (19) and multiplying by p it follows that

o o . o . o1/ . .

—: —T — — —py=0.

pae €+p6T +p6a(x+pa(ch) Va — py

By adding this equality and the inequalities (33) and (34), using

sy Vi = div(pg ) —adiv (5 0 )

and inserting (21)—(24) the Clausius—Duhem inequality (17) is recovered. This concludes the proof. [

Proposition 3. The free energy in (20), the state laws (25)—(27), (28) and the residual dissipation inequality (35)
ensure satisfaction of (18).
Proof. Letting ¢ denote time, the left-hand time derivative of ¥ is by definition

W — lim P(t) — Pt — A¢)

At—0 At
Ar>0

— lim V(1) — P (u,(t — At),u,(t — At), i (t — At), 0(t — At); 0(2), T(2)) N 6_‘1”0,C N a—lP'T.
Ai—0 At Qo or
At>0

Furthermore, the definition of the subdifferential in (25) implies that

W (u, (t — At), u,(t — At), u(t — Ar), (1t — At); a(2), T(2))
= IP(Z) +Pn(“n(f - At) - uﬂ(t)) +p - (”t(t - AZ) - ll,(t))
=P, (w(t = At) —wy (1)) — W (0t — At) — (1)),

where the subdifferential is evaluated at time . Now, dividing by A¢ > 0 and using the definition of left-
hand time derivative above one finds that

Pallty +p, ity —pl il — WD — Ao — ST — ¥ >0,

where (26) and (27) have also been used. Finally, by adding the inequality (35) and using (7), (24) and (28),
the inequality (18) is recovered. This concludes the proof of the proposition as well as the statement that
(19)—(33) are sufficient conditions for satisfaction of the Clausius—Duhem inequalities (17) and (18). O

At this point it is worth to note that for the special case when the free energy of the contact interface is
the sum of an indicator function and a smooth function, it is possible to prove that the last proposition
above also holds when time derivatives are regarded as right-hand derivatives, see Stromberg (1997).

3. Specific constitutive assumptions

In this section we propose specific forms of the free energies and the dual dissipation potentials, leading
to a model of damage coupled to wear. The model is intended for studying crack initiation in fretting
problems. Here we do not consider thermal effects. The constitutive equations defining the model of
damage coupled to wear are summarized in the end of the section. Finally, two variational formulations of
the full problem are presented.
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3.1. Constitutive model for the body

For the bulk material we use a simplified version of the model suggested by Frémond and Nedjar (1996).
It is simplified in the sense that it does not distinguish between the response in tension and compression.
This feature was introduced in the model suggested by Frémond and Nedjar (1996) by defining the free
energy and the dissipation potential in such a fashion that only the positive part of the strain tensor will
contribute to the evolution of damage.

The proposed model for rate-independent damage, including the gradient of the damage variable,
coupled to linear elasticity, is defined by the following free energy:

Y =+[(1 — a)(dtr(e)’ +2Ge : €) + ¢(Va)’], € [0, 1],

where tr represents the trace of a tensor, 4 and G are Lame’s elasticity coefficients and ¢ is a constitutive
constant that measures the influence of the damage of a point on its neighborhood, hence controlling the
size of the damaged zone. Furthermore, the dual dissipation potential is taken as

4)(‘4; €, O() = I,%’(etoc) (A)a

where I (x) denotes the indicator function of a set K, i.e. a function that takes the value 0 if x € K and +o0
otherwise, and

Ble,0) = {4 : 4 —La(ltr(e)’ +2Ge : €) — W <0}.
Here W > 0 is a constitutive parameter representing the strain energy threshold for initiation of damage.
The state laws (21) and (23) imply for this choice of free energy that
6 = (1 —a)(Ar(e)l + 2Ge)
and
A= %(/ltr(e)z + 2Ge : €) + cAa, (36)

where A = divV denotes the Laplacian. Moreover, the complementary law in (31) implies for the choice of
dissipation potential above that

A€ Be,n) a(d —A)<0 VA € HB(e, ),
or, equivalently,

=0, h<0, ah=0,
where

h= %(1 - O‘)()”tr(G)z +2Ge: €)+cAo— W.

Here, the explicit expression of 4 given by (36) has also been utilized.

3.2. Constitutive model for the contact interface

In this subsection a simple model for the contact interface introducing a coupling between wear and bulk
damage is suggested. The model is designed such that the driving force of damage on the contact surface
tends to zero as the damage approaches one. In such a manner situations where the coupled wear-damage
problem obviously lacks solution is avoided.

The model is defined by the following free energy for the contact interface:

lP(unv u;, ”ia w, O‘) = Ic(l/l,,, (’U) +ID(ut7 u;) + %(1 - Ot)sz, (37)
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where k is a constitutive parameter which is discussed at the end of this section,
C={(u,, ) :u, —w—g<0},

g is the initial contact gap and
D = {(u;,u}) : u, — u. = 0}.

In addition, the dual dissipation potential of the contact surface is taken to be
D(py, W R Puy 0) = L5 (p, ) P, W) + 15(R),

where
F(paso) = {0 W) < I + kW Dy < plpa) .+ k(pa =51 = 2)"0)p,},

w is the friction coefficient, k is the wear coefficient, (x), = max(0,x) and
G ={R:%=0}.

The state law in (25) implies for this choice of free energy that
=0, u,—w—-g<0, p,(u,—w—g) =0, (38)

W =p,— 31— o) K (39)

and p, = pi, with p, € R* arbitrary. The conditions in (38) are the Karush-Kuhn-Tucker conditions to the
following variational principle:

Pn €A (un — 0 —g)(gn —pu) SO Vg, € A,
where
Ay =A{pn: pn = 0}.
Furthermore, the state law in (26) generates
o = (1 — o)kow. (40)

The complementary law in (32) implies, for the choice of dissipation potential above, a sliding rule of
Coulomb type, i.e.

P € Eg(.pn) : ”; (g, —p)<0 Vg, € Eg(pn) (41)
and a wear law of Archard type, i.e.

@ = kp, i,
where the set

Z () = {p: Ip) <u(pa), ),

defining Coulomb’s cone, is obtained by inserting the explicit expression of #~ given by (39) into the set
7 (p,) and on using that p, = p/. Coulomb’s law is expressed in (41) as a principle of maximal dissipation.
This is equivalent to the following way of expressing Coulomb’s law:

li|p, = ip(p,),,  |p) <o),

Here, u, = u has also been used, which is a consequence of the definition of the set D. Furthermore, (32)
implies & arbitrary and # = 0 by the definition of the set ¢, which in turn yields, using (28) and (40),

n-cVo=(1—-o)ko.
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3.3. Summary of constitutive equations

In conclusion, the proposed constitutive model for damage coupled to wear can be summarized as
follows:

6= (1—a)(itr(e)l +2Ge) in Q, (42)
cAa=A —Y(Jtr(e)’ +2Ge 1 €) in Q, (43)
A€ Be,a):a(d —A)<0 VA € B(e,a) in Q, (44)
n-cVo=0 ondQ\T,, (45)
n-cVa=(l —a)kw on I, (46)
P €Ay (U —0—g)(qn—pa)<0 Vg, €4, onl,, (47)
P, €F(p) it -(q,—p)<O0 Vg, € F(p,) onl,, (48)
@ = kp,|lw,| on T.. (49)

The first four Eqgs. (42)—(45) are bulk properties similar to the damage models suggested by Frémond and
Nedjar (1996) and Nedjar (2001). The last three Eqs. (47)-(49) are tribological laws suggested in Stromberg
et al. (1996). The remaining Eq. (46) expresses the experimental fact that the fatigue performance usually is
decreased when a body is subjected to fretting conditions, see e.g Hills and Nowell (1994). This fact is here
modelled by letting the damage flux depend on the amount of wear, which in turn depends on the amount
of oscillatory slip. Thus, x is a constitutive parameter that governs this dependency.

It is also worth to note that the free energy in (37) is chosen in such a way that .o/ — 0 as & — 1. Another
choice of free energy leading to e.g.

n-cNVNo=«xw onl,

would be troublesome. Since w is non-decreasing the condition above then requires that Vo increases. One
might think of situations where the only possibility to obtain this is for o to increase where it is already one
and this is impossible since o € [0, 1]. Thus, the problem might lack solution. Since in the present case
n-cVo-n— 0 as o — 1 at the contact this difficulty is avoided.

3.4. Variational formulations

To conclude this section, we present two variational formulations of the full boundary value problem
defined by the equilibrium equations (4)—(6) and the constitutive relations summarized in Eqs. (42)—(49). The
full problem reads: Given proper initial conditions and a load history #(¢) on a time interval [0, ¢] find  :
[0,7] = 77, po: [0,7] = A, p,: [0,7] = F (Pu), 2:[0,7] = F and 4 : [0,7] — & such that for each time
t€10,71]

/a:e(v)dV—/t-vdA+/p'vdA:0 Yve v, (50)
Q I, c

/ (Qn _pn)(un —w—g)dASO Vg, € %na (51)
Te

/ (4,—p) - indA<0 Vg, € 7 (p,), (52)
I,
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/chx-VﬁdV—l-/AﬂdV—%/(itr(e)z—l—ZGe:e)ﬁdV—/ (1 —o)kwfdAd =0 Vpe T, (53)

/oz(A'—A)dVgo VA € B, (54)
Q

where, in addition, (42) is inserted and the evolution of w is governed by (49). Furthermore, the following
notations for function spaces are used:

v ={v:v(x)=0, xeTl,},
H o ={p.:pa(x) 20, xeTl.},
Z(p) = (x| <ppa(x),, xel},
T ={p:0<p(x) <1, xeQ}
and
B = {4 : A(x) — La(x) (tr(e(u(x))” + 2Ge(u(x) : e(u(x))) — W <0, xe€Q}.

An alternative formulation is obtained by replacing (53) and (54) by the following variational expres-
sions: Find o : [0,7] — Z and A : [0,7] — 5 such that for each time ¢ € [0, 1]

/QcVoc-VﬁdV—i-/QhﬁdV—%/Q(l—oc)(/ltr(e)z—f—ZGe:e)ﬁdV—i—/gWﬂ—/ﬂ(l—oc)rcwﬁdAzO

VRe T (55)
and
/oz(h’—h)dvgo Vi € #, (56)
Q
where

H ={h:h(x)<0, xecQ}.

This formulation is obtained by using the alternative formulation of (43) and (44) given at the end of
Section 3.1.

The variational formulations presented above are intended to be used as starting points for a finite ele-
ment discretization of the problem and in a future study it will be investigated if one formulation is perhaps
preferred from a numerical point of view.

4. An example

In this section a one-dimensional example is studied in order to discuss the basic behaviour of the
fretting damage model and the influence of the various constitutive parameters. The discussion is based on
numerical solutions obtained by a finite element approach.

Consider a homogenous bar of length L, Young’s modulus £ and cross-sectional area 4 in unilateral
wearing contact with a rigid support moving with a given constant velocity &, see Fig. 2.

Under the given circumstances the following one-dimensional problem can be stated from Eqgs. (4)—(6)
and (42)—(49): Find u(x), o(x) and P such that
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Fig. 2. A bar in unilateral wearing contact with a moving rigid support.
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(57)

0.1

d d
— (1 —a)E—| =0 1in (0,L
& 1-0E g 0.1,
du(L
u(0)=0, (1—a(l))EA l;gc ) =-P,
P>0a M(L)_w_g<07 P(M(L)_w_g):()a
P
o «F
=k ¢,
=0, h<0, ah=0 1in (0,L),
1 du\* d% .
hZE(I—OC)E(a) +C@—W m (O,L)
and
da(0 doa(L
% =0, c% = (1 - a(L))xo,
where P is the normal contact force.
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Fig. 3. Contact force versus wear gap evolution for W = 1.
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Fig. 4. Contact force versus wear gap evolution for ¢ = 0.01, x = 10 and different values of W.
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Fig. 5. The distribution of damage when P =0 for W = 1.

This problem is solved numerically using a finite element approach based on the one-dimensional cor-
respondence to the second variational formulation presented in the previous section. The fields u(x), o(x)
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and /(x) are approximated using piecewise linear polynomials and time rates are replaced by Euler-
backward differences. Furthermore, the variational inequalities corresponding to the contact conditions
and the damage evolution law is restated as equations by means of projections, (Klarbring, 1992). This is
done in such a manner that the discrete correspondence to the complementary conditions (57) are satisfied
at each nodal point. The result is a system of semi-smooth equations which is solved by a modified Newton
method suggested by Pang (1990). The method is similar to the Newton method presented in Ireman et al.
(2002). In a forthcoming paper the variational formulations will be studied numerically in detail for two-
dimensional problems.

Just to get a qualitative response, we choose £ =1 [Pa], 4 =1 [m?], L =1 [m], g = —0.1 [m], c either
equal to 0.1, 0.05 or 0.01 [N], W equal to 1, 0.1 or 0.01 [Pa] and x equal to 5 or 10 [Pa]. By studying the
governing equations it is concluded that k (units [m?/N]) and ¢ (units [m/s]) have no independent influence
on the response and their product has no other influence than introducing a time scale: a higher value
corresponds to a faster wear process. The calculations are terminated when the contact force vanishes, i.e
when the initial gap is worn away. The results are from calculations where 41 nodes were used.

Fig. 3 shows the evolution of the contact force versus the evolution of the wear gap for W =1 and
different values of x and c. For these sets of parameters the contact state is fairly uninfluenced by the
damage, i.e. the contact force-wear gap evolution remains close to linear. But as seen from Fig. 4, by
lowering the threshold W the contact state becomes more influenced by the evolution of damage.

The distribution of damage when the initial gap is worn away is depicted in Fig. 5 for W = 1 and diffe-
rent values of ¢ and x and in Fig. 6 for ¢ = 0.01, x = 10 different values of .

w=1 w=0.1
1 1
0.8} 0.8
0.6} 1 0.6
o o
0.4r 1 0.4
0.2} 1 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x

W=0.01

1

0.8

0.6

o

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1
T

Fig. 6. The distribution of damage when P = 0 for ¢ = 0.01, x = 10 and different values of W.
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It is seen from Fig. 5 how a larger value of x give rise to more damage and how the parameter ¢ controls
the size of the damaged zone. From Fig. 6 it is seen that lowering the threshold W also gives rise to more
wide-spread damage, e.g. for W = 0.01 damage spreads to the entire bar.

c=01 c=0.05
1 1
0.8 0.8
0.6 0.6
o(L) a(L)
0.4 0.
0.2 0.2
ok
t t
c=0.01
1
0.81
0.6
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0.
0.2 1
0
0 0.1 0.2 0.3 04
t

Fig. 7. The evolution of damage at the contact site (x = L) for W = 1.
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Fig. 8. The evolution of damage at the contact (x = L) for ¢ = 0.01, x = 10 and different values of .
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Finally, let us consider the evolution of the damage at the contact site x = L, shown in Figs. 7 and 8. The
time scale is chosen such that one time unit is the longest time it takes to wear away the initial gap for the
parameters considered (in this case when ¢ = 0.01, W = 0.01 and x = 10).

5. Concluding remarks

The objective of the present work has been to present an as simple model as possible for isotropic
damage coupled to wear, regarded as a first attempt to formulate a continuum model for studying crack
initiation in fretting fatigue. The model is based on a continuum damage model including the gradient of
the damage variable. This implies that the evolution of this variable is governed by a boundary value
problem. The boundary conditions are used to introduce a coupling between bulk damage and wear at the
contact interface. In this respect an additional constitutive parameter is introduced. This parameter reflects
the experimental fact that the nucleation of micro-cracks at the surface depends on the amplitude of relative
slip. The model is established within a thermo-mechanical framework where satisfaction of the principles of
thermodynamics is assured. A simple one-dimensional example shows the basic behaviour of the model, i.e.
quantitatively how the different parameters influence the coupling between damage and wear.

Our future plans is to develop a numerical method for solving the full boundary value problem presented
above and to provide numerical results for more representative two-dimensional examples using relevant
values of the constitutive parameters. Furthermore, the model needs to be further developed, for instance
by including a coupling to plasticity in order to better describe the evolution of damage in a ductile ma-
terial. Finally, in order to study fatigue crack initiation in metallic components in the high cycle fatigue
regime, one should also consider fatigue damage models.
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